免费一级欧美片在线观看网站_国产一区再线_欧美日本一区二区高清播放视频_国产99久久精品一区二区300

代寫COMP528、代做c/c++,Python程序語言

時間:2024-07-27  來源:  作者: 我要糾錯



University of Liverpool Assignment 1 Resit COMP528
In this assignment, you are asked to implement 2 algorithms for the Travelling Salesman
Problem. This document explains the operations in detail, so you do not need previous
knowledge. You are encouraged to begin work on this as soon as possible to avoid the queue
times on Barkla closer to the deadline. We would be happy to clarify anything you do not
understand in this report.
1 The Travelling Salesman Problem (TSP)
The travelling salesman problem is a problem that seeks to answer the following question:
‘Given a list of vertices and the distances between each pair of vertices, what is the shortest
possible route that visits each vertex exactly once and returns to the origin vertex?’.
(a) A fully connected graph
(b) The shortest route around all vertices
Figure 1: An example of the travelling salesman problem
The travelling salesman problem is an NP-hard problem, that meaning an exact solution
cannot be solved in polynomial time. However, there are polynomial solutions that can
be used which give an approximation of the shortest route between all vertices. In this
assignment you are asked to implement 2 of these.
1.1 Terminology
We will call each point on the graph the vertex. There are 6 vertices in Figure 1.
We will call each connection between vertices the edge. There are 15 edges in Figure 1.
We will call two vertices connected if they have an edge between them.
The sequence of vertices that are visited is called the tour. The tour for Figure 1(b) is
(0, 2, 4, 5, 3, 1, 0). Note the tour always starts and ends at the origin vertex.
A partial tour is a tour that has not yet visited all the vertices.
2023-2024 1University of Liverpool Assignment 1 Resit COMP528
2 The solutions
2.1 Preparation of Solution
You are given a number of coordinate ffles with this format:
x, y
4.81263062736921, 8.34719930253777
2.90156816804616, 0.39593575612759
1.13649642931556, 2.27359458630845
4.49079099682118, 2.97491204443206
9.84251616851393, 9.10783427307047
Figure 2: Format of a coord ffle
Each line is a coordinate for a vertex, with the x and y coordinate being separated by a
comma. You will need to convert this into a distance matrix.
0.000000 8.177698 7.099481 5.381919 5.087073
8.177698 0.000000 2.577029 3.029315 11.138848
7.099481 2.577029 0.000000 3.426826 11.068045
5.381919 3.029315 3.426826 0.000000 8.139637
5.087073 11.138848 11.068045 8.139637 0.000000
Figure 3: A distance matrix for Figure 2
To convert the coordinates to a distance matrix, you will need make use of the euclidean
distance formula.
d =
p
(xi − xj )
2 + (yi − yj )
2
Figure 4: The euclidean distance formula
Where: d is the distance between 2 vertices vi and vj
, xi and yi are the coordinates of the
vertex vi
, and xj and yj are the coordinates of the vertex vj
.
2023-2024 2University of Liverpool Assignment 1 Resit COMP528
2.2 Smallest Sum Insertion
The smallest sum insertion algorithm starts the tour with the vertex with the lowest index.
In this case that is vertex 0. Each step, it selects a currently unvisited vertex where the
total edge cost to all the vertices in the partial tour is minimal. It then inserts it between
two connected vertices in the partial tour where the cost of inserting it between those two
connected vertices is minimal.
These steps can be followed to implement the smallest sum insertion algorithm. Assume
that the indices i, j, k etc; are vertex labels unless stated otherwise. In a tiebreak situation,
always pick the lowest index(indices).
1. Start off with a vertex vi.
4
Figure 5: Step 1 of Smallest Sum Insertion
2. Find a vertex vj such that
Pt=Length(partialtour)
t=0
dist(vt
, vj ) is minimal.
Figure 6: Step 2 of Smallest Sum Insertion
3. Insert vj between two connected vertices in the partial tour vn and vn+1, where n is a
position in the partial tour, such that dist(vn, vj ) + dist(vn+1, vj ) - dist(vn, vn+1) is
minimal.
4. Repeat steps 2 and 3 until all of the vertices have been visited.
2023-2024 3University of Liverpool Assignment 1 Resit COMP528
Figure 7: Step 3 of Smallest Sum Insertion
4
(a) Select the vertex
(b) Insert the vertex
Figure 8: Step 4 of Smallest Sum Insertion
(b) Insert the vertex
Figure 9: Step 5 of Smallest Sum Insertion
2023-2024 4University of Liverpool Assignment 1 Resit COMP528
4
(b) Insert the vertex
Figure 10: Step 6 of Smallest Sum Insertion
(a) Select the vertex
(b) Insert the vertex
Figure 11: Step 7 of Smallest Sum Insertion
2023-2024 5University of Liverpool Assignment 1 Resit COMP528
2.3 MinMax Insertion
The minmax insertion algorithm starts the tour with the vertex with the lowest index. In this
case that is vertex 0. Each step, it selects a currently unvisited vertex where the largest edge
to a vertex in the partial tour is minimal. It then inserts it between two connected vertices
in the partial tour where the cost of inserting it between those two connected vertices is
minimal.
These steps can be followed to implement the minmax insertion algorithm. Assume that the
indices i, j, k etc; are vertex labels unless stated otherwise. In a tiebreak situation, always
pick the lowest index(indices).
1. Start off with a vertex vi.
Figure 12: Step 1 of Minmax Insertion
2. Find a vertex vj such that M ax(dist(vt
, vj )) is minimal, where t is the list of elements
in the tour.
Figure 13: Step 2 of Minmax Insertion
3. Insert vj between two connected vertices in the partial tour vn and vn+1, where n is a
position in the partial tour, such that dist(vn, vj ) + dist(vn+1, vj ) - dist(vn, vn+1) is
minimal.
4. Repeat steps 2 and 3 until all of the vertices have been visited.
2023-2024 6University of Liverpool Assignment 1 Resit COMP528
Figure 14: Step 3 of Minmax Insertion
(a) Select the vertex
4
(b) Insert the vertex
Figure 15: Step 4 of Minmax Insertion
(a) Select the vertex
(b) Insert the vertex
Figure 16: Step 5 of Minmax Insertion
2023-2024 7University of Liverpool Assignment 1 Resit COMP528
(a) Select the vertex
4
(b) Insert the vertex
Figure 17: Step 6 of Minmax Insertion
(b) Insert the vertex
Figure 18: Step 7 of Minmax Insertion
2023-2024 8University of Liverpool Assignment 1 Resit COMP528
3 Running your programs
Your program should be able to be ran like so:
$ ./<program name >. exe <c o o r d i n a t e f i l e n a m e > <o u t p u t fil e n am e >
Therefore, your program should accept a coordinate file, and an output file as arguments.
Note that C considers the first argument as the program executable. Both implementations
should read a coordinate file, run either smallest sum insertion or MinMax insertion, and
write the tour to the output file.
3.1 Provided Code
You are provided with the file coordReader.c, which you will need to include this file when
compiling your programs.
1. readNumOfCoords(): This function takes a filename as a parameter and returns the
number of coordinates in the given file as an integer.
2. readCoords(): This function takes the filename and the number of coordinates as
parameters, and returns the coordinates from a file and stores it in a two-dimensional
array of doubles, where coords[i][0] is the x coordinate for the ith coordinate, and
coords[i][1] is the y coordinate for the ith coordinate.
3. writeTourToFile(): This function takes the tour, the tour length, and the output
filename as parameters, and writes the tour to the given file.
4 Instructions
• Implement a serial solution for the smallest sum insertion and the MinMax insertion.
Name these: ssInsertion.c, mmInsertion.c.
• Implement a parallel solution, using OpenMP,for the smallest sum insertion and the
MinMax insertion algorithms. Name these: ompssInsertion.c, ompmmInsertion.c.
• Create a Makefile and call it ”Makefile” which performs as the list states below. Without
the Makefile, your code will not grade on CodeGrade.
– make ssi compiles ssInsertion.c and coordReader.c into ssi.exe with the GNU
compiler
– make mmi compiles mmInsertion.c and coordReader.c into mmi.exe with the
GNU compiler
2023-2024 9University of Liverpool Assignment 1 Resit COMP528
– make ssomp compiles ompssInsertion.c and coordReader.c into ssomp.exe with
the GNU compiler
– make mmomp compiles ompmmInsertion.c and coordReader.c into mmomp.exe
with the GNU compiler
– make issomp compiles ompssInsertion.c and coordReader.c into issomp.exe with
the Intel compiler
– make immomp compiles ompmmInsertion.c and coordReader.c into immomp.exe
the Intel compiler
• Test each of your parallel solutions using 1, 2, 4, 8, 16, and 32 threads, recording
the time it takes to solve each one. Record the start time after you read from the
coordinates file, and the end time before you write to the output file. Do all testing
with the large data file.
• Plot a speedup plot with the speedup on the y-axis and the number of threads on the
x-axis for each parallel solution.
• Plot a parallel efficiency plot with parallel efficiency on the y-axis and the number of
threads on the x-axis for each parallel solution.
• Write a report that, for each solution, using no more than 1 page per solution,
describes: your serial version, and your parallelisation strategy.
• In your report, include: the speedup and parallel efficiency plots, how you conducted
each measurement and calculation to plot these, and screenshots of you compiling and
running your program. These do not contribute to the page limit.
• Your final submission should be uploaded onto CodeGrade. The files you
upload should be:
1. Makefile
2. ssInsertion.c
3. mmInsertion.c
4. ompssInsertion.c
5. ompmmInsertion.c
6. report.pdf
7. The slurm script you used to run your code on Barkla.
2023-2024 10University of Liverpool Assignment 1 Resit COMP528
5 Hints
You can also parallelise the conversion of the coordinates to the distance matrix. When
declaring arrays, it’s better to use dynamic memory allocation. You can do this by:
int ∗ o n e d a r ra y = ( int ∗) malloc ( numOfElements ∗ s i z e o f ( int ) ) ;
For a 2-D array:
int ∗∗ twod a r ra y = ( int ∗∗) malloc ( numOfElements ∗ s i z e o f ( int ∗ ) ) ;
for ( int i = 0 ; i < numOfElements ; i ++){
twod a r ra y [ i ] = ( int ∗) malloc ( numOfElements ∗ s i z e o f ( int ) ) ;
}
5.1 MakeFile
You are instructed to use a MakeFile to compile the code in any way you like. An example
of how to use a MakeFile can be used here:
{make command } : { t a r g e t f i l e s }
{compile command}
s s i : s s I n s e r t i o n . c coordReader . c
gcc s s I n s e r t i o n . c coordReader . c −o s s i . exe −lm
Now, on the command line, if you type ‘make ssi‘, the compile command is automatically
executed. It is worth noting, the compile command must be indented. The target files are
the files that must be present for the make command to execute.
This command may work for you and it may not. The point is to allow you to compile
however you like. If you want to declare the iterator in a for loop, you would have to add the
compiler flag −std=c99. −fopenmp is for the GNU compiler and −qopenmp is for the
Intel Compiler. If you find that the MakeFile is not working, please get in contact as soon
as possible.
Contact: h.j.forbes@liverpool.ac.uk
2023-2024 11University of Liverpool Assignment 1 Resit COMP528
6 Marking scheme
1 Code that compiles without errors or warnings 15%
2 Same numerical results for test cases (tested on CodeGrade) 20%
3 Speedup plot 10%
4 Parallel Efficiency Plot 10%
5 Parallel efficiency up to 32 threads (tests on Barkla yields good efficiency
for 1 Rank with 1, 2, 4, 8, 16, 32 OMP threads)
15%
6 Speed of program (tests on Barkla yields good runtime for 1, 2, 4, 8, 16,
32 ranks with 1 OMP thread)
10%
7 Clean code and comments 10%
8 Report 10%
Table 1: Marking scheme
The purpose of this assessment is to develop your skills in analysing numerical programs and
developing parallel programs using OpenMP. This assessment accounts for 40% of your final
mark, however as it is a resit you will be capped at 50% unless otherwise stated by the Student
Experience Team. Your work will be submitted to automatic plagiarism/collusion detection
systems, and those exceeding a threshold will be reported to the Academic Integrity Officer for
investigation regarding adhesion to the university’s policy https://www.liverpool.ac.uk/
media/livacuk/tqsd/code-of-practice-on-assessment/appendix_L_cop_assess.pdf.
7 Deadline
The deadline is 23:59 GMT Friday the 2nd of August 2024. https://www.liverp
ool.ac.uk/aqsd/academic-codes-of-practice/code-of-practice-on-assessment/
2023-2024 12

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:CIT 593代做、代寫Java/c++語言編程
  • 下一篇:代寫COMP4337、代做Python編程設計
  • 代做IERG 4080、代寫Python程序語言
  • CS202代做、代寫Java/Python程序語言
  • 代做SEHH2239、Python程序語言代寫
  • COMP3334代做、代寫Python程序語言
  • 代寫COMP9021、代做Python程序語言
  • 昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    免费一级欧美片在线观看网站_国产一区再线_欧美日本一区二区高清播放视频_国产99久久精品一区二区300
    99久久亚洲一区二区三区青草| 欧美亚洲一区三区| 成人av集中营| 欧美一区二区三区四区五区| 亚洲欧美在线另类| 国产老妇另类xxxxx| 欧美精品一二三区| 成人综合在线网站| 精品国产一区二区三区忘忧草| 亚洲国产精品一区二区www | 色偷偷一区二区三区| 久久午夜免费电影| 视频精品一区二区| 在线观看一区二区精品视频| 国产精品乱码久久久久久| 经典三级在线一区| 91精品国产全国免费观看| 亚洲尤物视频在线| 色综合天天综合网国产成人综合天| 国产婷婷色一区二区三区在线| 蜜桃精品视频在线观看| 欧美浪妇xxxx高跟鞋交| 亚洲国产精品一区二区www | 亚洲综合色自拍一区| 99久免费精品视频在线观看| 国产日韩成人精品| 国产一区二区三区在线观看免费 | 捆绑变态av一区二区三区| 91精品久久久久久久91蜜桃| 亚洲成人777| 精品1区2区3区| 亚洲综合免费观看高清完整版 | 欧美不卡在线视频| 久久精品国产一区二区| 欧美成人乱码一区二区三区| 蜜臀av一区二区在线观看 | 日韩和欧美一区二区三区| 欧美图片一区二区三区| 亚洲最色的网站| 欧洲精品在线观看| 亚洲电影第三页| 欧美日韩一级片网站| 午夜视频久久久久久| 欧美老人xxxx18| 日本在线不卡视频一二三区| 日韩欧美中文一区| 精品在线观看免费| 久久精品一区二区三区不卡牛牛| 国产成+人+日韩+欧美+亚洲| 国产精品你懂的在线| 成人高清伦理免费影院在线观看| 亚洲欧美自拍偷拍色图| 色猫猫国产区一区二在线视频| 亚洲综合在线五月| 欧美肥大bbwbbw高潮| 麻豆久久一区二区| 久久精品欧美日韩| av激情综合网| 亚洲国产成人91porn| 欧美一级国产精品| 国产美女主播视频一区| 国产精品国产自产拍高清av王其| 色综合夜色一区| 亚欧色一区w666天堂| 日韩久久精品一区| 国产mv日韩mv欧美| 一区二区三区不卡视频 | 日韩精品色哟哟| 久久久99久久| 色呦呦网站一区| 日av在线不卡| 国产欧美精品国产国产专区| 91色在线porny| 欧美一激情一区二区三区| 麻豆免费精品视频| 亚洲国产高清在线观看视频| 色拍拍在线精品视频8848| 天天av天天翘天天综合网色鬼国产| 欧美成人性战久久| proumb性欧美在线观看| 亚洲电影激情视频网站| 精品久久久久久久人人人人传媒| 不卡一区二区在线| 亚洲国产视频直播| 2020国产精品| 在线观看91精品国产入口| 美国十次综合导航| 国产精品色婷婷| 欧美精品1区2区| 国产成a人亚洲精品| 亚洲一二三专区| 久久综合色婷婷| 色哦色哦哦色天天综合| 久久成人18免费观看| 国产精品色在线观看| 91精品国产一区二区| 成人黄色大片在线观看| 日韩不卡在线观看日韩不卡视频| 欧美韩日一区二区三区| 欧美日韩一本到| 风间由美一区二区av101| 午夜精品爽啪视频| 国产精品欧美精品| 日韩网站在线看片你懂的| 99精品黄色片免费大全| 久久不见久久见免费视频7| 亚洲日本va午夜在线影院| 欧美成人猛片aaaaaaa| 色综合婷婷久久| 国产一区二区视频在线播放| 亚洲成a人片在线观看中文| 日本一区二区成人在线| 日韩一区二区在线观看| 在线一区二区三区做爰视频网站| 国产一区二区三区免费播放| 舔着乳尖日韩一区| 亚洲视频狠狠干| 久久综合999| 91精品国产一区二区三区蜜臀 | 久久婷婷成人综合色| 欧美日韩国产小视频在线观看| 成人一区在线看| 美女视频一区二区三区| 亚洲夂夂婷婷色拍ww47| 国产精品乱码人人做人人爱| 26uuu色噜噜精品一区| 欧美日韩国产片| 色婷婷综合久久久久中文一区二区| 国产一区二区精品久久| 日本中文字幕不卡| 亚洲一二三区不卡| 亚洲欧洲av另类| 国产人久久人人人人爽| 欧美电视剧在线看免费| 欧美年轻男男videosbes| 色综合久久综合网欧美综合网 | 久久久国产一区二区三区四区小说 | 国产婷婷一区二区| 精品久久久久久久人人人人传媒 | 亚洲美女免费视频| 亚洲国产高清不卡| 精品国产伦一区二区三区观看方式 | 欧美日本国产视频| 欧美性色欧美a在线播放| 91美女在线看| av电影在线观看不卡| 成人精品小蝌蚪| 国产·精品毛片| 国产福利一区在线| 国产一区二区女| 国产一区二区三区电影在线观看 | 26uuuu精品一区二区| 日韩精品一区二区三区三区免费| 欧美猛男gaygay网站| 欧美日韩你懂得| 欧美日韩精品一二三区| 欧美视频第二页| 欧美日韩一区不卡| 欧美日本国产一区| 6080yy午夜一二三区久久| 91精品国产91久久久久久最新毛片 | 精品国产伦一区二区三区观看体验 | 国产精品国产三级国产普通话三级| 国产欧美va欧美不卡在线| 国产日韩欧美精品在线| 国产婷婷一区二区| 亚洲国产精品成人综合| 国产精品视频第一区| 中文字幕一区二区三区不卡| 中文字幕欧美一| 一区二区三区中文在线观看| 一区二区三区成人| 亚洲国产成人91porn| 午夜成人在线视频| 奇米影视在线99精品| 久久成人免费网| 国产精品911| www.亚洲人| 色婷婷精品大在线视频| 欧美性高清videossexo| 欧美久久婷婷综合色| 91精品在线免费观看| 日韩精品一区二区三区视频播放| 精品91自产拍在线观看一区| 久久精品在线免费观看| 亚洲欧洲美洲综合色网| 亚洲欧美偷拍另类a∨色屁股| 一级精品视频在线观看宜春院| 午夜电影一区二区| 久久99精品国产麻豆婷婷| 国产精品一二三区| www.日韩精品| 欧美三级视频在线观看| 欧美一级免费大片| 久久久久九九视频| 亚洲欧美自拍偷拍色图| 亚洲大片一区二区三区| 久久99国产精品尤物| gogo大胆日本视频一区| 欧美三级日韩在线|